
Y963 Zimtrserer: Spherical Mirror Fabry-Perot Resonators 371

resulting power transmissivit y El. ~1* = 7(x) /~U. A small

unevenness is seen to reduce the transmissivity only in

the center part of the transmission band (b= 0.5). A

larger unevenness also affects its wings, they are

slightly increased.

The peak transmission TO of the ideal FPI is reduced

by the unevenness to ?O, and the bandwidth, measured

between the points 0.5 ?o, is increased from 27r/F to

2T/~ in the x scale. In Fig. 14 the ratios ?O/rO and ~/F

are plotted vs b, the parameter of unevenness. The

properties of the FPI remain essentially unchanged by

anunevennessupto b = 0.1, that is up to Ad SO. lh/(4nF).

An unevenness of the order Ad~h/ (4nF) reduces, how-

ever, both F and TO to approximately half their ideal

values. It is remarkable that for a given unevenness F

and ro are reduced by nearly the same factor,

~/F = fo/To, (22)

This fact is not determined by the special assumption

(19) for the distribution of spacings. It results for all

reasonable distributions if they are not too broad. The

amplitude transmissivity is obtained by weighting

HI(x) (see curve b = O in Fig. 12) with the distribution

function. If the distribution is narrow, this averaging

process reduces the center part of the transmission band

and has negligible influence on the wings, as it was al-

ready observed for the special distribution (19). As a

consequence the points Xllz of half-maximum intensity

are shifted approximately along the power transmission

curve of the ideal FPI which is the curve b = O in Fig. 13.

T(x)/T” = HI(X) Hi*(%) = (1 + .P)-l. (23)

The shift goes from xl,, = ~ 1 to .~ll, = ~ (2i,,/ro – 1)1~~

and results in a decrease of the finesse.

T ‘=;”(2:-%)”2’24)7 = 5,,,

The value of the last bracket is only slightly different

from 1. It lies between 0.9 and 1 for ().6 ~70/ro~ 1.

Therefore, in good approximation (22) should hold for

all reasonable distributions of spacing as long as this

ratio (22) is ~0.6.

A relation of the type (22) is observed between the

experimental and theoretical values in Figs. 8 and 9.

CTsing Fig. 14 the magnitude of the unevenness and of

the error in parallelism is estimated to be Ad= 1.5 . ~ .

2 p for both types of FPI’s.
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Spherical Mirror Fabry-Perot Resonators*
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Summary—An experimental investigation of the Fabry-Perot

Interfometer (FPS) using spherical mirrors is reported. The FPS
was operated as a microwave resonant cavity at 60 to 70 Gc. Meas-

urements were made of the loss and coupling as a function of mirror

spacing. The electric field variation within the resonator was also
measured. Other characteristics of the spherical Fabry-Perot reso-

nator were observed and are dkcussed.
A qualitative discussion of the behavior of a spheroidal cavity

resonator is presented and its relation to the FPS and beam wave-
guide is demonstrated.

INTRODtTCTION

T

HE SPHERICAL mirror Fabry-Perot Inter-

feromter (FPS) was first introduced as a new

optical instrument by Connes [1]. In a series of
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papers [1], [2], he developed a geometrical ol~tics theory

and application of the instrument. With the advent of

the laser the FPS was employed as a resonator and an

electromagnetic theory of its operation was developed

by several investigators at Bell Telephone Labora-

tories [3 ]– [7 ]. In a parallel development t of the beam

waveguide for the transmission of quasi-optical micro-

wave power, Goubau and his associates have developed

an electromagnetic theory [8] which has many applica-

tions to the FPS. The application and experimental

verification of these various theories has been most

rapid. The direct observation of laser output [9], the

successful operation of the microwave FPS [IO], [1 I ],

the transmission line studies of the beam waveguide

[12 ]- [15], all verified the theoretical soundness of the

work.

We have constructed and operated a variet~- of micro-

wave Fabry-Perot resonators of both planar and spheri-
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cal type [16]. Experimental investigation of the FPS at

microwave frequencies is particularly attractive because

of the comparative ease with which direct measure-

ments of phase and amplitude can be made, We have

made our measurement at wavelengths between 8 and

4 mm where klystron generators of good stability and

power output are conveniently available. At these wave-

lengths not all the restrictions of the optical theory are

satisfied while the theory of the beam waveguide is not

yet extensive enough to include all aspects of the micro-

wave FPS.

EVOLUTION OF THE FPS FROM A

SPHEROIDAL RESONATOR

In our work with the FPS we have found it quite in-

structive to consider it as being evolved from a micro-

wave cavity formed by rotating an ellipse about its

minor axis. Such a closed surface with rotational sym-

metry is a special form of ellipsoid called an oblate

spheroid [17 ]. This surface can be described by the set

of equations

b
Z= —tcoso

2

b —.
r=~xz+y2=~~l+.$zsin 0 (1)

where z is measured along the axis of rotation and r per-

pendicular to it.

For a given b there is an oblate spheroid for every

value of ~ between O and co and a hyperboloid for each

value of O between O and 7r/2. These con focal oblate

spheroids and hyperboloids constitute an orthogonal co-

ordinate system in which Nlaxwell’s equations can be

expressed. If the wave equation is expressed in this co-

ordinate system and the eigenfunctions are examined, a

most remarkable behavior is found [18], [19]. The

eigenfunctions are significantly different from zero only

in the neighborhood of tlNO. The 9 for which each eigen-

function decreases to a certain fraction of its maximum

value, increases with the order of the eigenfunction and

with the ratio A,/b. Thus for an oblate spheroidal reso-

nator b>>k, the portion of the cavity walls far off the

axis of symmetry play no appreciable role in the

boundary condition that the field should vanish at the

oblate spheroidal surface. Only an area on the z axis

(0= O) is pertinent to this boundary condition. If the

remainder of the spheroidal surface is discarded, what

is left is a pair of approximately spherical mirrors. By

virtue of the orthogonal coordinate system of $ and 6,

we know that the spheroidal surfaces within the reso-

nator are surfaces of constant phase and the hyper-

boloids are surfaces of constant amplitude. If b>>A, the

solution is nonzero only for 0 near zero and the surfaces

of constant phase are paraboloids. An examination of

(1) shows that if b~O in such a way that b$/2+p a

spherical coordinate system results.

In the general case of a spheroidal cavity it is neces-

sary to know the curvature of the approximately spheri-

cal portion on the z axis. This can be calculated from the

generating ellipse, The radius of curvature of an ellipse

on the minor axis is given by the square of the major

axis divided by the minor axis. From (1) it follows that

the radius of curvature b’ of the spheroidal surface at

8=Ois

(2)

which can be recognized as (23) of Boyd and Gordon

[5]. The relationship of the oblate spheroidal resonator

to the FPS now becomes clear. The family of oblate

spheroids belonging to a pair of foci of separation b gen-

erates all the possible combinations of spherical mirrors

of radius of curvature bl and b~spaced a distance d. This

is illustrated in Fig, 1.

In the actual operation of the FPS the parameter b is not

as useful as the spacing d of the mirrors.

Eliminating b from (3) we have

d, d(b, – d)

7= b,+ b,–2d

d, d(b, – d)

T= bl+bZ–2d
(4)

where dl+d~ = 2d. In this discussion it is also useful to

express b in terms of the physical parameters of the

FPS.

b <d(b, – d)(b, – d)(b, + b, – d)
——_ .

7= b,+ b,–2d
(5)

In this discussion the convention that b,< b, is en-

ployed. As developed in part VI of Bovd and Kogeluik

[6], all combinations of radii of curvature and mirror

spacing are not resonant structures. From (5) it can be

seen that the interfocal distance of the prototype

spheroidal resonator becomes zero at four different

values of the mirror spacing d. The limit b = O results in

a spherical coordinate s~-stem which has the familiar

Bessel functions for eigeufunctions. For bl <d < bz and

bi+bz <d, b is imaginary. These are the high loss regions.
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The upper diagram in Fig. 1 shows the general case

for nonidentical nlirrors. Note that convex mirrors, as

well as concave, are allowed. The emphasized ellipse has

the minimum radius of curvature on the axis and deter-

mines the special case of confocal identical mirrors sym-

metrically spaced about the origin. The unique de-

generacy of the confocal placement of identical mirrors

can be seen by noting that, from (3), any oblate spheroid

with b <b’ will generate the required confocal mirror

surfaces. In the limit bPN the spheroid becomes a sphere

with its center at one mirror or the other. This limiting

case for nonicfelltical mirrors is illustrated in Fig. 1 (b).

The general eigenfunctions for the oblate spheroidal

resonator and in particular their asylnptoti( form for

b>>A are discussed in much detail b>- Flammer [1x]. If

b>>A the angular functions can be expressed in terms of

the Laguerre polynomials. In the limit b/h~ m the ex-

pansion contains only the first term. “rhis is the solution

obtaining for paraboloidal coordinates as developed by

Pinney [20]. In the optical lilnit with b/A~107 the

spherical mirror is indistinguishable from a paraboloidal

mirror; in the microwave region with b,;A~lOz there is

a measurable difference between these two mirrors.

In the experiment described by Christian and Goubau

[I ~] at 2ZI Gc, lenses corresponding to parabolic mirrors

were used and the electric field variation across the

aperture m-as observed to be a smoothly changing func-

tion with a single maximum on the axis of the beam

~vaveguide. Jn measurements of the field variation with-

in a coufocal parabolical resonator at 9.3 (~c, Beyer

[14] reports very good agreement within the eigen-

function of the dominant lowest-order mode of the beam

waveguide. The electric field variation lmeasured per-

pendicular to the axis of a FJ?S at several axial posi-

tions is shown in Fig. 2. In this measurement the fre-

quency was 61 Gc and b~h was 115. (.4 discussion of the

experimental method used to record these nleasure-

ments is deferred to later. ) It is evident that at least a

fourth-order symmetric field distribution is present in

what is the lowest mode of this FPS. The flat mirror was

a highly polished brass surface and the spherical mirror a

polished quartz mirror of optical quality with an evapo-

rated copper surface. It is interesting to note that an

equivalent spherical mirror of brass did not produce

nearly as sharp a field structure. In all probability this

was due to the less precise surface figure of the brass

mirror which tended to ‘(blur” the distinction between

sphere and paraboloid.

The complex field structure of the FPS at microwave

frequencies may be a disadvantage in some applications

but this is strongly compensated by the ease with which

it is aligned. The spherical surface of the mirror can be

defined by a point, the center of curvature. The axis of

the FPS is the line containing the two centers of curva-

ture. If this axis intersects each mirror near enough to

its center so that the electromagnetic fields are confined

LIMIT I LIMIT 2 LIMIT 3

d —o d—b, OR b, d—-b, t b2

Fig. l—Spherical mirror Fabry-Perot resonator deri~,ed from con-
focal obl~te spheroids. (a) General case. (b) Limiting cases.
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Fig. 2—Electric field variation perpen,~icular to
resonator axis and electric field.

entirely within the mirror aperture, the FPS is aligned.

A small rotation of one mirror can be corrected by an

axial translation. This is not the case with either the

planar Fabry-Perot or the parabolic mirror resonator.

These mirror surfaces are characterized by an axis or

normal. Alignment is only achieved when the axis of the

paraboloids coincide or the normals to the plane mirrors

are parallel. A rotation of one mirror cannot be compen-

sated by an axial translation. Resonators using a t least

one plane mirror can be displaced laterally keeping their

axes parallel but two paraboloids have only one relative

placement for correct alignment.

In our laboratory we have experienced the difficulty

of aligning flat mirrors to make a microwave planar

Fabry-Perot resonator. Optical instruments were finally

employed to simplify the tedious process. Beyer [14] re-
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ports similar difficulty with paraboloids. In sharp con-

trast, the FPS alignment procedure is trivial. This prob-

lem of precise alignment is carried over to the beam

waveguide where it affects the stability of a long trans-

mission path containing many lenses,

THE ANALOGY TO THE BmmI WAVEGUIDE

Another aspect of the stability problem arises from

the practical limitations of making mirrors or lenses

identical. The FPS with different focal length mirrors is

equivalent to a beam waveguide composed of a periodic

sequence of lenses of alternating focal lengths. The

transmission line analog was employed by Fox and Li

[4] in their numerical calculation of the losses and mode

structure of a variety of resonators. The converse

analog was employed by Christian and C~oubau [12]

when they used a resonator to measure the losses of a

beam waveguide. Such a transmission line analog is de-

picted in Fig. 3. One condition for stable operation

would require that any image plane should recur periodi-

cally at the same relative position. This is illustrated by

two planes, each at a distance x from two successive

lenses of the same focal length. Using the thin lens equa-

tion of geometrical optics, I/j= I/P+ 1/.S, and the rela-

tion between the focal length and radius of curvature of

a mirror, I/j= 2/R, the position on the optical axis of

the image point is

X(I, 2)

d(Rz – d) ~ ~–d(RI – d)(l?, – d)(RI + R2 – ~) (@
——

Rli-RZ-2d

where 1 and 2 refer to the two different lenses. It is ap-

parent that both real and complex x are obtained de-

pending upon the spacing of d. For the complex roots

of x, where the complex conjugate of x is denoted by I,

x(1, 2) +z(2, 1) = d. Referring to (4) and (5) the roots

of (6) can be written

2x(1, 2) = dl + ib

23(2, 1) = dz – ib. (7)

This identification is shown symbolically in Fig. 4 where

the elliptical section of a spheroidal resonator is super-

posed on the periodic sequence of lenses. This method

could be extended to cover any reiterated sequence of

lenses or mirrors of different focal lengths but it would

not yield much more understanding of the phenomena.

What is of great interest is the stability of such a trans-

mission line when the lens spacing is nearly periodic and

the focal lengths are randomly distributed about some

design center as would occur in any practical application.

To study this requires more sophisticated methods than

geometrical optics. Similar stability problems have

been considered by Pierce for electron beams [21] and

beam waveguides [22] and occur in particle accelerators

using periodically spaced magnets.

Td_T_dT’T
+l–&jH-j-

1,

p4(l,2 +x(2,1)& +1[24,1>

(

d(Rr-dl~ ./ –d(R, –dl(R, -dl[R1+R, –d)
X(1,21.

It, +R, -zd

WITH R = 2 x FOCAL LENGTH OF LENS

Fig. 3—Periodic sequence of simple lenses with
alternating focal lengths.

— “+-
.+2

1[2,1) s+-,+ t-x(f!,)+~(2.,)i---

Fig. 4—Relationship of oblate spheroidal resonator
to periodic sequence of lenses.

lWEASLiREiMENT OF RESONATOR LOSSES

Experimental measurements of the losses of the beam

waveguide lens due to diffraction were made by Chris-

tian and C.oubau [12], [13] and Beyer [14], and Beyer

and Scheibe [15]. These experiments consisted of operat-

ing con focal paraboloidal resonators and measuring the

Q of the resonator. We have measured the loss of the

FPS as a function of mirror spacing for resonators using

both identical and nonidentical mirrors. Several reso-

nators were constructed using different combinations of

spherical mirrors.

The FPS was operated as a microwave reaction

cavity in order to have one mirror free to move. The

fixed mirror was 12 cm in diamter with an RG-98u or

RG-99u waveguide feed at the center. A coupling hole

of diameter equal to the short waveguide dimension

was drilled through the mirror. The iris was as thin as

possible, about 0.010 inch. The brass mirrors were

turned on a lathe and polished to a specular finish. They

gave rather good optical images even though surface im-

perfections could be seen. The mirror figures were prob-

ably of the order of 0.001 inch out of a wavelength of

0.180 inch, which is comparable to the finest optical

quality obtained at optical wavelengths. Several mirrors

were quartz, ground and polished to optical standards

and coated with 10–* cm of copper by evaporation. The

figure of these mirrors was good to 10–4A at microwave
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frequencies. The alignment of the FPS was accomplished

by autocollimation using a small flashlight. This was a

simple procedure because the FPS mirrors produced a

good image of the point source,

The Q of the FPS is so high, and stable klystron

sources so difficult to operate, a dynamic method of

measuring Q was employed. This method was only possi-

ble because of the inherent high stability of the particu-

lar klystrons used. The klystron was connected to the

FPS through a 10-db 4-port directional coupler. The

bolometer cletector was connected to the same side of

the directional coupler as the FPS and measured the

power reflected back from the FPS-waveguide junction.

The klystron repeller was modulated with a low-

frequency sawtooth waveform which deviated the nli-

crowave frequency some 10 Nlc. The bolometer output

was rnonotored on an oscilloscope. ]Frequency markers

were generated by a second simultaneous modul~tiou of

the klystron repeller by an RF voltage of several IJ[c.

Such RF modulation produces sidebands of known sepa-

ration which are resolved by the resonator giving ab-

sorption dips on the oscilloscope. The RF modulation is

used only to calibrate the sweep length and is not pres-

ent during measurements of the FPS resonance width.

A typical Ca]i}jratioll was ~ cm/~[c deviation of the

klystron center frequency-. The FPS-resonance width

varied from 0.5 ATc to several Mc. The ratio of power

absorbed b>- the FPS to that incident on the coupling

hole, 1 – I I’. I ‘, was measured simultaneously with the

resonance width. The use of a bolometer had the ad-

vantage that oscilloscope deflections were proportional

to power. The signal-to-noise ratio was better by an

order of magnitude than with a video crystal, although

there was considerable variation among bolometers and

crystals. .4 disadvantage of the bolorneter is its long

time constant which requires slow sweep speeds for

faithful reproduction of the sharp resonance of the

FPS. Some difficulty was experienced due to a back-

ground of microwave power which “leaked” into the

bolometer, This leakage varied markedly with fre-

quency and was always minimized before making

measurements.

The Q of the FPS resonator, neglecting diffraction

losses, is given by the well-known relation

(8)

where \ r~ I 2X1 is the power reflection coefficient of a

single mirror and q = 2d/X, the longitudinal mode

number.

The mirror reflection loss is given by

(9)

where r [23] is the real part of the normalized surface

impedance of a metal, and O, p and g have their cus-

tomary meaning. The calculated value of 1 – ) I’~1 2 for

a copper surface at 70 Gc is about 10–3.

A set of measurements of q~/Q vs d is shown in

Fig. 5 for an FPS operated at 69,5 Gc, The upper curve

shows the high loss region for bl <d <bz. The lower curve

was measured using one flat mirror because of the dif-

ficulty of making two brass mirrors of identical curva-

ture. The aperture of the movable flat mirror was large

enough so that diffraction losses were due entirely to the

spherical mirror. The measurements were plotted

against 2d for ease of comparison, An attempt was made

to fit a theoretical curve to the results. It was impossible

to get a good fit with the upper curve but the lower

curve was closely described by assuming an effective

value of a~/bA = 1.38 instead of the actuzl value of 1.64.

The corresponding measurements of 1 – I I’CI ‘ are

shown in P“ig. 6, .4 surprising feature is the apparent low

coupling to the FPS in the far region, d > b~.

To better interpret Figs. 5 and 6 it is useful to propose

an equivalent microwave circuit for the general FPS.

An equivalent series resonant circuit is given in Fig. 7.

The FPS may be regarded as a section of’ beam wave-

guide transmission line short-circuited at each end. The

characteristic impedance of this transmission line is Zz,

the voltage attenuation constant is a, the impedance of

each mirror is (1 +j)R ohms and the reactance of the

coupling hole is j.Y. Elementary transmission line

theory [24] shows that a low but finite impedance trans-

forms into itself in moving q half wavelengths along a

low loss transmission line. The resonant nature of the

length qA/2 of the transmission line is represented by

the equivalent lumped reactance and capacitance of

equal magnitude qrZ~/2. The transmissicm line equiv-

alent resistance is adZj ohms. The coupling hole trans-

forms the input waveguide impedance into a very low

impedance X2/Z1. The Q of a series resonant circuit is

given by the quotient of the magnitude of the inductive

reactance and resistance at resonance. Assuming that

Zl~Z2PZ0 of free space and neglecting the small

quantities jX and jR compared with q7rZz/2, we g-et the

expected result [23].

Q= q“

4r + 2ad + 2.x2
(10)

where

R X
y.— and x=—,

20 2“

which reduces to (8) for a = x = O. in these experiments

the FPS was undercoupled and 2YW5X2. The quantity

1 – I I’,1 z can be expressed in terms of tlhe equivalent

microwave circuit as

42
l–lrcl~=—

(1 +Z
(11)

with

2Y + ad
2= (12)

&
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The term ad is entirely due to absorption in the gas

contained between the mirrors. At 70 Gc the normal

atmospheric loss is about 0.5 db/km (a=10–7 cm–l)

and rises as high as 15 db/l~m in the middle of the 0?

absorption band at 60 Gc [25]. In these measurements

ad was too small to be resolved as an independent con-

tribution to the resonator loss. The diffraction loss, ~L)

in the notation of Boyd and Gordon [5], was measured.

Rewriting (10) in this notation,

and ~R is identified as 4Y. Rewriting (11) we get for

large values of O!L)~~n,

I–lrc/’=
(8x’)

aR + OJD
(14)

which is the same form as the expression for Q/mq.

Since the measured value of both 1 – I I’.] ‘ and Q/rg

are plotted on semilog paper, the curves should be quite

similar in regions of high loss or low coupling. By super-

posing Figs. 5 and 6 it can be observed that this indeed

is the case.

In fitting a theoretical curve to the data the expres-

sion for ~D, suggested by Boyd and Gordon [5], was used.

This is

O!D = .410-BN. (15)

They give the values of A = 10.9 and B = 4.94 for the

TEM,OO mode with the square mirror. It was found that

better argeement was obtained using the values A =29

and B = 4.83 which fit the curve of O!D as given by Beyer

and Scheibe [15] and Fox and Li [4] for the TEMaoo

mode with a circular mirror. From (43) of Boyd and

Kogelnik we obtain

[1
1/2

N,=~:–l

(16)

with S1==dJbl, SZ= dzibz, and dl and d~ defined by (3) and

(4). Because only one mirror contributed to the dif-

fraction loss in the FPS when using one flat and one

spherical mirror, (13) was modified to give

(17)

as the equation of the curve with @ determined from

(15) and (16). The measured value 4.6 X 10-3 was used

for the quantity C2E+2XZ. This compares with ffR = 10–3

nomputed for copper by (9).
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It is expected that an extrernum should be observed

in the far region for both gr/’Q and 1 – 11’, I z for 61# bz.

From (3) and (16) it can be seen that this should occur

when b = bl, whereupon 2d = bl+b~+ ~(bZ2 —61Z). For

these measurements the extremum should occur at

d=60.3 cm. This agrees well with the 1 – I I’,1 2 data but

not with the qr,/Q measurements.

.%1 interesting feature of these data is that the

coupling to the FPS is lower in the far region, d > bj than

in the near region d < bl by an order of magnitude. If

the FPS axis moved away from the coupling hole in

going from d =40 to d =60 cm, the field of the resonator

at the coupling hole could be smaller than the maximum

and account for the decreased coupling. Attempts to

realign the FPS have shown this not be to the explana-

tion. This effect is real and occurs in all the FPS of this

type we have operated. In view of the complex field

structure with in the FPS, a possible explanation is a re-

lative decrease of field strength on the axis compared to

the average field across the aperture as d increases. This

would account for the gradual decrease in coupling

shown iu the upper curve of Fig. 6 as d goes from O to

60 cm.

hlE~SUREMENT OF FIELD DISTRI~T.:TION

At this point it is appropriate to mention that the

field of the FPS was measured by moving a small Iossy

paper disk across the mirror aperture and recording the

change in power absorbed by the cavity (1 – I I’.] ‘). If

the object is of small volume compared with the active

resonator volume, low loss compared with the natural

resonator losses, and dielectric and magnetic properties

nearly that of free space, it will have very little per-

turbing effect on the field and can be represented as an

added series resistance in the equivalent circuit. The

equivalent resistance will be very nearly proportional to

the square of the local electric field. The reflected re-

sistance z of the FPS at resonance norrna]ized to the

waveguide impedance varied from about 6 to 9 in these

field measurements as the probe moved from zero to

maximum field locations. From (11) it can be found that

1 — I I’.) z is linear to 4 per cent for this change in z.

The paper disk was supported b}- a nylon thread

passing through its center and wound on the shaft of a

O. I-per cent helipot. As the helipot shaft was rotated the

paper disk moved across the mirror aperture at right

angles to the plane of the electric field. A voltage de-

veloped by the helipot referenced its lateral position.

The paper disk was about 2h in diameter. To use an un-

stabilized klystron with a FPS of QZ105, the klystron

was swept in frequency as previously described. The

peak of the bolometer output corresponded to 1 – I I’. I 2

at resonance. Detuning effects and sweep to sweep fre-

quency changes were greatly minimized by using a peak

detector to rectify the ac signal from the bolometer.

Thus two dc voltages were derived to operate an X Y

recorder which made the traces of Fig. 2. The complex

field pattern of Fig. 2 is strongly dependent on the mir-

ror spacing. This phenomenon appears to be real and

not caused by the presence of the probe within the

resonator. Further study of this is being undertaken.

RESONANCE WITHIN THE ltIGH LOSS REGION

The experiments indicate that the resonances persist

into the high loss region where the present E“PS theory is

not valid [26]. I t is of interest to estimate how close to

the high loss regions the approximate theory should be

valid. To do this w-e might say that b, the iuterfocal dis-

tance of the spheroidal prototype resonator, should be

at least 20A. 1f we let d approach to within c, the 4 limit-

ing mirror separations, we obtain for e the following

minimum values:

For this FPS e =0.16 cm, e = 2.0 cm, a rather close ap-

proach to the boundaries of the high loss region.

Our work demonstrates that within the central high

loss region there are two TEl\IraO resonances present

which can be identified as belonging to the two low loss

regions. “rhey occur at slightly different values of the

mirror spacing d. The one is decaying as the other is

growing with increasiu~ d. It seems reasonable to define

a wavelength within the resonator to be twice the dis-

tance the mirrors must be displaced tc, change g by

unity. From (47) of 130yd and Kog-eluik we have

qd 1+7’ ?2+$2
. — ——— Cos–1 (1 – s) (20)

7=A 2T

where s = d~b’. Calculating Aq!r2Ad we get the Taylor

Series expansion.

Aq 1 1 1+?)2+?2
—— ——

2Ad=h, =h 2xb’ <s(2 – S)

{

1–s x,
. l–

s(2 — S) 4b’

2s’ – 4s + 3 AQ2
~ (21)+ —~-+”””f

S?(2 — S)2 .

where Ad has been put equal to h,,/2. Near the confocal

spacing, s-l and (21) simplifies to

[

I+wz+z k-1
&,=xl–

2T 17“ (22)



378 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES Sepfember

If & is computed for two different FPS resonators each

with identical mirrors of radius of curvature bl and bz

spaced approximately confocally, we obtain a fractional

difference in wavelength given by

(23)

where q = (2d/A)>>l and A is very nearly equal to i~. As-

suming that the two nearly coincident TEMgOO reso-

nances within the high loss region belong to the same q,

but to slightly different values of A,, one can compute

the fractional difference in wavelength from (23) to be

or

Lleasurements ou several FPS gave excellent agreement

with this interpretation. Ad was of the order 0.004 inch,

just about the limit for reading the micrometer mirror

adjustment. The assignment of wavelengths to the two

low loss regions was in agreement with (22), the near

region d < bl having the longer h~ and the far region

d > bz having the shorter A,.

The definition of& as given by (22) has been verified

to within the error of experimental measurements of &,

by simultaneous measurement of the frequency to some

six places. For the larger FPS the free-space wavelength

h agreed with the resonator wavelength & to the 3

figure precision of the ~, measurement. The FPS has

been used with confidence in these measurements to de-

termine the operating wavelength of the klystron. It is

surprising that (22) appears to hold even for the small

wavemeter constructed for RG-98/u waveguide [26].

In that instrument the radius of curvature of the mir-

rors is only 10A and since it is operated confocally b of

(5) is also 10L

HIGHER-ORDER MODES

Qualitative verification was made of the existence of

higher-order TEMdm. modes. These were quite con-

spicuous at close mirror spacing and in fact could be

easily confused with the dominant TEikfq.O mode be-

cause of their prominence. At no time could clear evi-

dence be found of the axially symmetric “bulls eye”

modes. These are predicted for circular mirrors from

beam waveguide theory [8] as well as being one of the

results obtained by Fox and Li [4] (Boyd and Kogelnik

[6] compare these formulations in the appendix to their

paper). The mirrors could always be readjusted to

resolve a single resonance peak of a higher-order mode

into two or more individual resonances. These multi-

ples could be shown to have different numbers of

maxima along the electric field and at right angles to it.

In this respect they conformed to the square mirror

theory of Boyd and Gordon, with the degeneracy in m

and n removed by a small difference in the radius of

curvature in the x-z and y-z. planes.

The true surface of a real mirror can be considered

to have one or more zones where the curvature is con-

stant and each zone would form its own FPS. If the

wavelength is such that the field overlaps many zones,

multiples might well occur of the type observed in

these experiments. As an approximation one could

replace the oblate spheroid prototype FPS by an ellip-

soid with all three axes different. The FPS mirror would

have two principal curvatures along orthogonal diam-

eters. This would resemble the prototype strip mirrors

of Boyd and Gordon where the square mirrors are re-

solved into two strip mirrors along orthogonal direc-

tions. The strip mirror in turn can be considered to be

generated by an elliptical cylinder. The solution of the

resonator or waveguide problem for an elliptical cylin-

der with interfocal distance large compared to the wave-

lengths gives the eigenfunctions of the FPS [19].

Many variations of the FPS have already been con-

sidered by those working with them such as using two

cylindrical reflectors at right angles (circular, elliptical,

or parabolic), or unfolding the resonator to make a

beam waveguide using mirrors instead of lenses. Un-

doubtedly many more applications of the FPS will be

invented as microwave technology makes increasing

use of physical optics.
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Microwave Type Bolometer for Submillimet(~r
Wave Measurements*

J. F. BYRNE~, FELLOW, IEEE, AND C. F. COOK~

Summary—An approach to the problem of submillimeter wave

measurement through the extension of microwave techniques has led

to the development of a submillimeter bolometer with the sensitivity

requisite to calibration with a thermal source. The sensor employs

conventional components, horn, waveguide and coaxial line, with a

novel coax-to-guide transition consisting of part of the bolometer

element, the rest of which serves as a center conductor of the coaxial

lines. The entire set of submiltimeter components is contained in a

~-inch block of metal. Fundamental problems of detection in this band

are discussed with application to the sensor. Calibration techniques

and data taken with the instrument are reported.

INTROD~CTION

T
HE SENSOR described in this paper is the out-

come of an effort to provide a method of meas-

urement of radiation in the wavelength region

around and below one millimeter. In approaching the

problem of submillimeter wave measurement it was

decided that the equipment design might well be bene-

fited through the extension of microwave technologies

* Received January 21, 1963. This paper was presented at the
IEEE Millimeter and Submillirneter Conference, Orlando, Fla.
January 7-10, 1963.

t Motorola Inc., Technical Products Divisions, Phoeniy Ariz.
~ Motorola Inc., Systems Research Laboratory, Riverside, Calif.

into this portion of the spectrum rather than the alter-

nate approach which would be to attack the problem

from the infrared point of view.

A prime advantage of the microwave view was the

likelihood that the number of unknown quantities

could be minimized through the almost exclusive use of

metallic elements in the system. The bolon~eter dcsi~n

finally adopted essentially consists of a horn antenna

feeding a submillimeter waveguide which is terminated

in a novel waveguide to coax transition section. The

COLLXkl section has a center conductor of LVolkwton

wire of extremely small size and high loss per unit

length. The termination of the coaxial section is of little

importance because of the high loss along the coax. The

waveguidc is thus terminated in a trarlsition to coax

with a ‘~lossy” line as the load.

SENSOR CONFIGURATION

Fig. 1 shows the sensor configuration. The bolorneter

wire serves both as the center conductors of the two

lossy coaxial lines and the probe which couples the wave-

guide and the coax system, The probe crosses the wave-


