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resulting power transmissivity Hy - Hi* =7(x) /7o. A small
unevenness is seen to reduce the transmissivity only in
the center part of the transmission band (6=0.5). A
larger unevenness also affects its wings, they are
slightly increased.

The peak transmission 7 of the ideal FPI is reduced
by the unevenness to 7y, and the bandwidth, measured
between the points 0.5 7y, is increased from 27/F to
27/F in the x scale. In Fig. 14 the ratios 7o/7¢ and F/F
are plotted vs b, the parameter of unevenness. The
properties of the FPI remain essentially unchanged by
anunevennessupto b=0.1, thatis up to Ad <0.1N/(4nF).
An unevenness of the order Ad>~\/(4nF) reduces, how-
ever, both F and 7, to approximately half their ideal
values. It is remarkable that for a given unevenness F
and 7 are reduced by nearly the same factor,

F/F o~ 7y/70. (22)

This fact is not determined by the special assumption
(19) for the distribution of spacings. It results for all
reasonable distributions if they are not too broad. The
amplitude transmissivity is obtained by weighting
H,(x) (see curve b=0 in Fig. 12) with the distribution
function. If the distribution is narrow, this averaging
process reduces the center part of the transmission band
and has negligible influence on the wings, as it was al-
ready observed for the special distribution (19). As a
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consequence the points xy/2 of half-maximum intensity
are shifted approximately along the power transmission
curve of the ideal FPI which is the curve b=01n Fig. 13.

() /Ty >~ Hi(2)H:*(z) = (1 4+ £~ (23)

The shift goes from xp= +1 to &12= =+ (27,/7,— 1)1
and results in a decrease of the finesse.

Sy Y

X1/0 T0 To 7‘02
The value of the last bracket is only slightly different
from 1. It lies between 0.9 and 1 for 0.6 <7,/7(<1.
Therefore, in good approximation (22) should hold for
all reasonable distributions of spacing as long as this
ratio (22) is >0.6.

A relation of the type (22) is observed between the
experimental and theoretical values in Figs. 8 and 9.
Using Fig. 14 the magnitude of the unevenness and of
the error in parallelism is estimated to be Ad=1.5 - - -
2 u for both types of FPI’s.

(24)

=
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Spherical Mitror Fabry-Perot Resonators™

ROBERT W. ZIMMERERT, SENIOR MEMBER, IEEE.

Summary—An experimental investigation of the Fabry-Perot
Interfometer (FPS) using spherical mirrors is reported. The FPS
was operated as a microwave resonant cavity at 60 to 70 Gc. Meas-
urements were made of the loss and coupling as a function of mirror
spacing. The electric field variation within the resonator was also
measured. Other characteristics of the spherical Fabry-Perot reso-
nator were observed and are discussed.

A qualitative discussion of the behavior of a spheroidal cavity
resonator is presented and its relation to the FPS and beam wave-
guide is demonstrated.

INTRODUCTION

HE SPHERICAL mirror Fabry-Perot Inter-
feromter (FPS) was first introduced as a new
optical instrument by Connes [1]. In a series of

* Received April 29, 1963; revised manuscript received June 20,
1963. A preliminary note on this work has been published by the
author, “Experimental investigation of Fabry-Perot interferometers,”
Proc. IRE (Correspondence), vol. 51, pp. 475-476; March, 1963.

t National Bureau of Standards, Boulder, Colo.

papers [1], [2], he developed a geometrical optics theory
and application of the instrument. With the advent of
the laser the FPS was employed as a resonator and an
electromagnetic theory of its operation was developed
by several investigators at Bell Telephone Labora-
tories [3]-[7]. In a parallel development of the heam
waveguide for the transmission of quasi-optical micro-
wave power, Goubau and his associates have developed
an electromagnetic theory [8] which has many applica-
tions to the FPS. The application and cxperimental
verification of these various theories has been most
rapid. The direct observation of laser output [9], the
successful operation of the microwave FPS [10], [11],
the transmission line studies of the beam waveguide
[12]-[15], all verified the theoretical soundness of the
work.

We have constructed and operated a variety of micro-
wave Fabry-Perot resonators of both planar and spheri-
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cal type [16]. Experimental investigation of the FPS at
microwave frequencies is particularly attractive because
of the comparative ease with which direct measure-
ments of phase and amplitude can be made. We have
made our measurement at wavelengths between 8 and
4 mm where klystron generators of good stability and
power output are conveniently available. At these wave-
lengths not all the restrictions of the optical theory are
satisfied while the theory of the beam waveguide is not
yet extensive enough to include all aspects of the micro-
wave FPS.

EvoLuTtioN oF THE FPS rroMm A
SPHEROIDAL RESONATOR

In our work with the FPS we have found it quite in-
structive to consider it as being evolved from a micro-
wave cavity formed by rotating an ellipse about its
minor axis. Such a closed surface with rotational sym-
metry is a special form of ellipsoid called an oblate
spheroid [17]. This surface can be described by the set
of equations

z=?§c056
T Ape—
r:\/xz+yz:7\/1+g2sin9 (1)

where z is measured along the axis of rotation and r per-
pendicular to it.

For a given b there is an oblate spheroid for every
value of £ between 0 and » and a hyperboloid for each
value of # between 0 and w/2. These confocal oblate
spheroids and hyerboloids constitute an orthogonal co-
ordinate system in which Maxwell’s equations can be
expressed. If the wave equation is expressed in this co-
ordinate system and the eigenfunctions are examined, a
most remarkable behavior is found [18], [19]. The
eigenfunctions are significantly different from zero only
in the neighborhood of §~0. The 6 for which each eigen-
function decreases to a certain fraction of its maximum
value, increases with the order of the eigenfunction and
with the ratio \/b. Thus for an oblate spheroidal reso-
nator 3>\, the portion of the cavity walls far off the
axis of symmetry play no appreciable role in the
boundary condition that the field should vanish at the
oblate spheroidal surface. Only an area on the z axis
(#=0) is pertinent to this boundary condition. If the
remainder of the spheroidal surface is discarded, what
1s left is a pair of approximately spherical mirrors. By
virtue of the orthogonal coordinate system of £ and 6,
we know that the spheroidal surfaces within the reso-
nator are surfaces of constant phase and the hyper-
boloids are surfaces of constant amplitude. If 53>\, the
solution is nonzero only for 6 near zero and the surfaces
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of constant phase are paraboloids. An examination of
(1) shows that if 5—0 in such a way that b£/2—p a
spherical coordinate system results.

In the general case of a spheroidal cavity it is neces-
sary to know the curvature of the approximately spheri-
cal portion on the z axis. This can be calculated from the
generating ellipse. The radius of curvature of an ellipse
on the minor axis is given by the square of the major
axis divided by the minor axis. From (1) it follows that
the radius of curvature & of the spheroidal surface at
#=0is

b

7 ’ (2)

14¢
E

-

which can be recognized as (23) of Boyd and Gordon
[5]. The relationship of the oblate spheroidal resonator
to the FPS now becomes clear. The family of oblate
spheroids belonging to a pair of foci of separation b gen-
erates all the possible combinations of spherical mirrors
of radius of curvature b; and b, spaced a distance d. This
is illustrated in Fig. 1.

dy = b £ \/b_l2 - bﬁz
dy = by + /bs? — B2 (3)

In the actual operation of the FPS the parameter b is not
as useful as the spacing d of the mirrors.
Eliminating b from (3) we have

di d(by — d)
2 b1t by — 2d

ds  d(b — d)
= o)
b1+ by — 2d

where di+d.=2d. In this discussion it is also useful to
express b in terms of the physical parameters of the
FPS,

o VAl — d)(by — d) (b1 -+ b — d) ;
> by + b — 2d )

In this discussion the convention that b, <b, i1s em-
ployed. As developed in part VI of Bovd and Kogelnik
[6], all combinations of radii of curvature and mirror
spacing are not resonant structures. From (5) it can be
seen that the interfocal distance of the prototype
spheroidal resonator becomes zero at four different
values of the mirror spacing d. The limit b =0 results in
a spherical coordinate system which has the familiar
Bessel functions for eigenfunctions. For b, <d <bs and
bi+b,<d, bisimaginary. These are the high loss regions.
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The upper diagram in Fig. 1 shows the general case
for nonidentical mirrors. Note that convex mirrors, as
well as concave, are allowed. The emphasized ellipse has
the minimum radius of curvature on the axis and deter-
mines the special case of confocal identical mirrors sym-
metrically spaced about the origin. The unique de-
generacy of the confocal placement of identical mirrors
can be seen by noting that, from (3), any oblate spheroid
with b<®’ will generate the required confocal mirror
surfaces. In the limit 5—0 the spheroid becomes a sphere
with its center at one mirror or the other. This limiting
case for nonidentical mirrors is illustrated in Fig. 1(b).

The general eigenfunctions for the oblate spheroidal
resonator and in particular their asymptotic form for
b\ are discussed in much detail by Flammer [18]. If
b>>\ the angular functions can be expressed in terms of
the Laguerre polynomials. In the limit 6/A—w the ex-
pansion contains only the first term. This is the solution
obtaining for paraboloidal coordinates as developed by
Pinney [20]. In the optical limit with 5/A~107 the
spherical mirror is indistinguishable from a paraboloidal
mirror; in the microwave region with 5,/A~10? there is
a measurable difference between these two mirrors.

In the experiment described by Christian and Goubau
[12] at 24 G, lenses corresponding to parabolic mirrors
were used and the electric field variation across the
aperture was observed to be a smoothly changing func-
tion with a single maximum on the axis of the beam
waveguide. In measurements of the field variation with-
in a confocal parabolical resonator at 9.3 (Gc, Beyer
[14] reports very good agreement within the eigen-
function of the dominant lowest-order mode of the beam
waveguide. The electric field variation measured per-
pendicular to the axis of a FPS at several axial posi-
tions is shown in Fig. 2. In this measurement the fre-
quency was 61 Ge and b/\ was 115. (A discussion of the
experimental method used to record these measure-
ments is deferred to later.) It is evident that at least a
fourth-order symmetric field distribution is present in
what is the lowest mode of this F'PS. The flat mirror was
a highly polished brass surface and the spherical mirror a
polished quartz mirror of optical quality with an evapo-
rated copper surface. It is interesting to note that an
equivalent spherical mirror of brass did not produce
nearly as sharp a field structure. In all probability this
was due to the less precise surface figure of the brass
mirror which tended to “blur” the distinction between
sphere and paraboloid.

The complex field structure of the FPS at microwave
frequencies may be a disadvantage in some applications
but this is strongly compensated by the ease with which
it is aligned. The spherical surface of the mirror can be
defined by a point, the center of curvature. The axis of
the FPS is the line containing the two centers of curva-
ture. If this axis intersects each mirror near enough to
its center so that the electromagnetic fields are confined
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Fig. 1—Spherical mirror Fabry-Perot resonator derived from con-
focal oblate spheroids. (a) General case. (b) Limiting cases.
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Fig. 2—Electric field variation perpendicular to
resonator axis and electric field.

entirely within the mirror aperture, the FPS is aligned.
A small rotation of one mirror can be corrected by an
axial translation. This is not the case with either the
planar Fabry-Perot or the parabolic mirror resonator.
These mirror surfaces are characterized by an axis or
normal. Alignment is only achieved when the axis of the
paraboloids coincide or the normals to the plane mirrors
are parallel. A rotation of one mirror cannot be compen-
sated by an axial translation. Resonators using at least
one plane mirror can be displaced laterally keeping their
axes parallel but two paraboloids have only one relative
placement for correct alignment.

In our laboratory we have experienced the difficulty
of aligning flat mirrors to make a microwave planar
Fabry-Perot resonator. Optical instruments were finally
employed to simplify the tedious process. Beyer [14] re-
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ports similar difficulty with paraboloids. In sharp con-
trast, the FPS alignment procedure is trivial. This prob-
lem of precise alignment is carried over to the beam
waveguide where it affects the stability of a long trans-
mission path containing many lenses.

THE ANALOGY TO THE BEaM WAVEGUIDE

Another aspect of the stability problem arises from
the practical limitations of making mirrors or lenses
identical. The FPS with different focal length mirrors is
equivalent to a beam waveguide composed of a periodic
sequence of lenses of alternating focal lengths. The
transmission line analog was emploved by Fox and Li
[4] in their numerical calculation of the losses and mode
structure of a variety of resonators. The converse
analog was employed by Christian and Goubau [12]
when they used a resonator to measure the losses of a
beam waveguide. Such a transmission line analog is de-
picted in Fig. 3. One condition for stable operation
would require that any image plane should recur periodi-
cally at the same relative position. This is illustrated by
two planes, each at a distance x from two successive
lenses of the same focal length. Using the thin lens equa-
tion of geometrical optics, 1/f=1/P+1/.5, and the rela-
tion between the focal length and radius of curvature of
a mirror, 1/f=2/R, the position on the optical axis of
the image point is

x(1, 2)

_ dRy—d) + v/ —d(Ri — d)(Re — d)(Ri+ R — d) (6)
- Ry + Ry — 2d

where 1 and 2 refer to the two different lenses. It is ap-
parent that both real and complex x are obtained de-
pending upon the spacing of d. For the complex roots
of x, where the complex conjugate of x is denoted by #,
x(1, 2)4+%(2, 1) =d. Referring to (4) and (5) the roots
of (6) can be written

20(1, 2) = dy + b
25(2, 1) = dy ~ ib. Q)

This identification is shown symbolically in Fig. 4 where
the elliptical section of a spheroidal resonator is super-
posed on the periodic sequence of lenses. This method
could be extended to cover any reiterated sequence of
lenses or mirrors of different focal lengths but it would
not yield much more understanding of the phenomena.
What is of great interest is the stability of such a trans-
mission line when the lens spacing is nearly periodic and
the focal lengths are randomly distributed about some
design center as wouldoccur in any practical application.
To study this requires more sophisticated methods than
geometrical optics. Similar stability problems have
been considered by Pierce for electron beams [21] and
beam waveguides [22] and occur in particle accelerators
using periodically spaced magnets.
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MEASUREMENT OF RESONATOR LOSsES

Experimental measurements of the losses of the beam
waveguide lens due to diffraction were made by Chris-
tian and Goubau [12], [13]| and Beyer [14], and Beyer
and Scheibe [15]. These experiments consisted of operat-
ing confocal paraboloidal resonators and measuring the
Q of the resonator. We have measured the loss of the
FPS as a function of mirror spacing for resonators using
both identical and nonidentical mirrors. Several reso-
nators were constructed using different combinations of
spherical mirrors.

The FPS was operated as a microwave reaction
cavity in order to have one mirror free to move. The
fixed mirror was 12 cm in diamter with an RG-98u or
RG-99u waveguide feed at the center. A coupling hole
of diameter equal to the short waveguide dimension
was drilled through the mirror. The iris was as thin as
possible, about 0.010 inch. The brass mirrors were
turned on a lathe and polished to a specular finish. They
gave rather good optical images even though surface im-
perfections could be seen. The mirror figures were prob-
ably of the order of 0.001 inch out of a wavelength of
0.180 inch, which is comparable to the finest optical
quality obtained at optical wavelengths. Several mirrors
were quartz, ground and polished to optical standards
and coated with 10~ cm of copper by evaporation. The
figure of these mirrors was good to 10\ at microwave
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frequencies. The alignment of the FPS was accomplished
by autocollimation using a small flashlight. This was a
simple procedure because the FPS mirrors produced a
good image of the point source.

The Q of the FPS is so high, and stable klvstron
sources so difficult to operate, a dynamic method of
measuring () was employed. This method was only possi-
ble because of the inherent high stability of the particu-
lar klystrons used. The klystron was connected to the
FPS through a 10-db 4-port directional coupler. The
bolometer detector was connected to the same side of
the directional coupler as the FPS and measured the
power reflected back from the FPS-waveguide junction.
The klystron repeller was modulated with a low-
frequency sawtooth waveform: which deviated the mi-
crowave frequency some 10 Mc. The bolometer output
was monotored on an osciloscope. Frequency markers
were generated by a second simultaneous modulation of
the klystron repeller by an RF voltage of several Me.
Such RF modulation produces sidebands of known sepa-
ration which are resolved by the resonator giving ab-
sorption dips on the oscilloscope. The RF modulation is
used only to calibrate the sweep length and is not pres-
ent during measurements of the FPS resonance width.
A typical calibration was 2 cm/NMc deviation of the
klystron center frequency. The FPS-resonance width
varied from 0.5 Mec to several Mc. The ratio of power
absorbed by the FPS to that incident on the coupling
hole, 1 — ‘ T',| % was measured simultaneously with the
resonance width. The use of a bolometer had the ad-
vantage that oscilloscope deflections were proportional
to power. The signal-to-noise ratio was better by an
order of magnitude than with a video crystal, although
there was considerable variation among bolometers and
crystals. A disadvantage of the bolometer is its long
time constant which requires slow sweep speeds for
faithful reproduction of the sharp resonance of the
FPS. Some difficulty was experienced due to a back-
ground of microwave power which “leaked” into the
bolometer. This leakage varied markedly with fre-
quency and was always minimized before making
measurements.

The Q of the F'PS resonator, neglecting diffraction
losses, is given by the well-known relation

Q=gr/(1 = | Tn|? (8)

where {T',.|2~1 is the power reflection coefficient of a
single mirror and ¢=2d/\, the longitudinal mode
number.

The mirror reflection loss is given by

1 | Talr=dr =44/ 9)
2

where 7 [23] is the real part of the normalized surface
impedance of a metal, and w, p and g have their cus-

tomary meaning. The calculated value of 1— } F,,.) : for
a copper surface at 70 Gc is about 1073,
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A set of measurements of gr/Q vs d is shown in
Fig. 5 for an FPS operated at 69.5 Ge. The upper curve
shows the high loss region for b; <d < b.. The lower curve
was measured using one flat mirror because of the dif-
ficulty of making two brass mirrors of identical curva-
ture. The aperture of the movable flat mirror was large
enough so that diffraction losses were due entirely to the
spherical mirror. The measurements were plotted
against 2d {or ease of comparison. An attempt was made
to fit a theoretical curve to the results. It was impossible
to get a good fit with the upper curve but the lower
curve was closely described by assuming an effective
value of a2/bA =1.38 instead of the actual value of 1.64.

The corresponding measurements of 1— | .| ? are
shown in Fig. 6. A surprising feature is the apparent low
coupling to the FPS in the far region, d> b.

To better interpret Figs. 5 and 6 it is useful to propose
an equivalent microwave circuit for the general FPS.
An equivalent series resonant circuit is given in Fig. 7.
The FPS may be regarded as a section of beam wave-
guide transmission line short-circuited at each end. The
characteristic impedance of this transmission line is Z,,
the voltage attenuation constant is «, the impedance of
each mirror is (145)R ohms and the reactance of the
coupling hole is jX. Elementary transmission line
theory [24] shows that a low but finite impedance trans-
forms into itself in moving ¢ half wavelengths along a
low loss transmission line. The resonant nature of the
length gA\/2 of the transmission line is represented by
the equivalent lumped reactance and capacitance of
equal magnitude gwZ,/2. The transmission line equiv-
alent resistance is adZ> ohms. The coupling hole trans-
forms the input waveguide impedance into a very low
impedance X?*/Z;. The Q of a series resonant circuit is
given by the quotient of the magnitude of the inductive
reactance and resistance at resonance. Assuming that
Zi~Zo~2Zy of free space and neglecting the small
quantities 7.X and jR compared with grZ,/2, we get the
expected result [23].

qmr

=— 10
¢ 1r + 2ad + 2x2 (10)
where
R X
r=— and x=—)
Zy A

which reduces to (8) for a =x=0. In these experiments
the FPS was undercoupled and 2r~5x2. The quantity

1—|F, 2 can be expressed in terms of the equivalent
microwave circuit as
1z
1— | D2 - (11)
(142
with
2y + ad
5= —— (12)
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Fig. 5—Power losses in two Fabry-Perot resonators.
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Fig. 7—Equivalent series resonant circuit of
Fabry-Perot resonator.

The term «d is entirely due to absorption in the gas
contained between the mirrors. At 70 Gc the normal
atmospheric loss is about 0.5 db/km (a~10"7 cm™)
and rises as high as 15 db/km in the middle of the O.
absorption band at 60 Ge [25]. In these measurements
ad was too small to be resolved as an independent con-
tribution to the resonator loss. The diffraction loss, ap
in the notation of Boyd and Gordon [5], was measured.

Rewriting (10) in this notation,
m .
0=- (13)

ag + ap + 222

and ag is identified as 4». Rewriting (11) we get for
large values of ap+ag,
8x?
1 — 4Pclz=_¥ (14)
ag + ap

which is the same form as the expression for Q/mg.
Since the measured value of both 1—!I‘c 2 and Q/mq
are plotted on semilog paper, the curves should be quite
similar in regions of high loss or low coupling. By super-
posing Figs. 5 and 6 it can be observed that this indeed
is the case.

In fitting a theoretical curve to the data the expres-
sion for ap,suggested by Boyd and Gordon [5 ], was used.
This is

ap = A10-B¥, (15)

They give the values of 4 =10.9 and B=4.94 for the
TEM,,, mode with the square mirror. It was found that
better argeement was obtained using the values 4 =29
and B =4.83 which fit the curve of ap as given by Beyer
and Scheibe [15] and Fox and Li [4] for the TEM g
mode with a circular mirror. From (43) of Boyd and
Kogelnik we obtain

012 2 1/2
Ny = —[~ - l:l
b1>\ S1

1/2
Ny = — ~—1] , (16)

with s1=d1/b1, s2=ds/bs, and d; and d- defined by (3) and
(4). Because only one mirror contributed to the dif-
fraction loss in the FPS when using one flat and one
spherical mirror, (13) was modified to give

Tq 1
6 = QR + 24D —[— 2x? (17)

as the equation of the curve with ap determined from
(15) and (16). The measured value 4.6 X103 was used
for the quantity ag-2x2 This compares with ar =103
computed for copper by (9).
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It 1s expected that an extremum should be observed
in the far region for both ¢r/Q and 1—|I',| 2 for b;5%D..
From (3) and (16) it can be seen that this should occur
when b=by, whereupon 2d =b;+bs+ /(b2 —6:). For
these measurements the extremum should occur at
d=060.3 cm. This agrees well with the 1 —|I'.| 2 data but
not with the ¢gw/(Q measurements.

An interesting feature of these data is that the
coupling to the FPS is lower in the far region, d > b, than
in the near region d <b; by an order of magnitude. If
the FPS axis moved away from the coupling hole in
going from d =40 to d =60 c¢m, the field of the resonator
at the coupling hole could be smaller than the maximum
and account for the decreased coupling. Attempts to
realign the FPS have shown this not be to the explana-
tion. This effect is real and occurs in all the FPS of this
type we have operated. In view of the complex field
structure with in the FPS, a possible explanation is a re-
lative decrease of field strength on the axis compared to
the average field across the aperture as d increases. This
would account for the gradual decrease in coupling
shown in the upper curve of Fig. 6 as d goes from 0 to
60 cm.

MEASUREMENT OF FIELD DISTRIBUTION

At this point it is appropriate to mention that the
field of the FPS was measured by moving a small lossy
paper disk across the mirror aperture and recording the
change in power absorbed by the cavity (1 —]I‘c . I
the object is of small volume compared with the active
resonator volume, low loss compared with the natural
resonator losses, and dielectric and magnetic properties
nearly that of {ree space, it will have very little per-
turbing effect on the field and can be represented as an
added series resistance in the equivalent circuit. The
equivalent resistance will be very nearly proportional to
the square of the local electric field. The reflected re-
sistance z of the FPS at resonance normalized to the
waveguide impedance varied from about 6 to 9 in these
field measurements as the probe moved from zero to
maximum field locations. From (11) it can be found that
1— ’ T'.|? is linear to 4 per cent for this change in z.

The paper disk was supported by a nvlon thread
passing through its center and wound on the shaft of a
0.1-per cent helipot. As the helipot shaft was rotated the
paper disk moved across the mirror aperture at right
angles to the plane of the electric field. A voltage de-
veloped by the helipot referenced its lateral position.
The paper disk was about 2\ in diameter. To use an un-
stabilized klystron with a FPS of Q~10°, the klystron
was swept in {requency as previously described. The

2

peak of the bolometer output corresponded to 1 — \ I,
at resonance. Detuning effects and sweep to sweep fre-
quency changes were greatly minimized by using a peak
detector to rectify the ac signal from the bolometer.
Thus two dc voltages were derived to operate an XV
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recorder which made the traces of Fig. 2. The complex
field pattern of Fig. 2 is strongly dependent on the mir-
ror spacing. This phenomenon appears to be real and
not caused by the presence of the probe within the
resonator. Further study of this is being undertaken.

Resonance WitHiN tHE Hica Loss ReEGION

The experiments indicate that the resonances persist
into the high loss region where the present FPS theory is
not valid [26]. It is of interest to estimate how close to
the high loss regions the approximate theory should be
valid. To do this we might say that &, the interfocal dis-
tance of the spheroidal prototype resonator, should be
at least 20\. If we let d approach to within e, the 4 limit-
ing mirror separations, we obtain for ¢ the following
minimum values:

1 1 d"—)bl‘—f
e = 100A2 <~ —~> (18)
1 b d—by+ e
100"<1 4 1) i (19)
B by b d—by+ by — e

For this FPS €=0.16 cm, e=2.0 cm, a rather close ap-
proach to the boundaries of the high loss region.

Our work demonstrates that within the central high
loss region there are two TEM,, resonances present
which can be identified as belonging to the two low loss
regions. They occur at slightly different values of the
mirror spacing d. The one is decaying as the other is
growing with increasing d. It seems reasonable to define
a wavelength within the resonator to be twice the dis-
tance the mirrors must be displaced to change ¢ by
unity. From (47) of Boyd and Kogelnik we have

d 14+m-+n
—q~:~~—~—~«— cosTt (1 —s)
2 A 27

(20)

where s=d/b’. Calculating Ag/2Ad we get the Taylor
Series expansion.

Ag 1 1 14+m-4n
2ad N, N 2ab'/s(2 — )
.{1 B 1—5s A
s(2—3s) 4
252 — 45+ 3 A2
S R ey
s22 — s5)r 2407 [

where Ad has been put equal to A,/2. Near the confocal
spacing, s~1 and (21) simplifies to

14+m+n A0
xy=x[1————~ﬁ] :

2 b =
™
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If A, is computed for two different FPS resonators each
with identical mirrors of radius of curvature &, and b,
spaced approximately confocally, we obtain a fractional
difference in wavelength given by

AX, A < 1 1)

N 20\b b
where g=(2d/\)>>1 and N is very nearly equal to \,. As-
suming that the two nearly coincident TEM,, reso-
nances within the high loss region belong to the same ¢,

but to slightly different values of \;, one can compute
the fractional difference in wavelength from (23) to be

(23)

Y
or
AN, Ad
- (24)
A d

Measurements on several FPS gave excellent agreement
with this interpretation. Ad was of the order 0.004 inch,
just about the limit for reading the micrometer mirror
adjustment. The assignment of wavelengths to the two
low loss regions was in agreement with (22), the near
region ¢ <0y having the longer N\, and the far region
d > b, having the shorter A,.

The definition of A, as given by (22) has been verified
to within the error of experimental measurements of \,
by simultaneous measurement of the frequency to some
six places. For the larger FPS the free-space wavelength
A agreed with the resonator wavelength A, to the 3
figure precision of the A, measurement. The FPS has
been used with confidence in these measurements to de-
termine the operating wavelength of the klystron. It is
surprising that (22) appears to hold even for the small
wavemeter constructed for RG-98/u waveguide [26].
In that instrument the radius of curvature of the mir-
rors is only 10A and since it is operated confocally & of
(5) is also 10X,

HicureEr-OrDER MODES

Qualitative verification was made of the existence of
higher-order TEMuyn, modes. These were quite con-
spicuous at close mirror spacing and in fact could be
easily confused with the dominant TEM,, mode be-
cause of their prominence. At no time could clear evi-
dence be found of the axially symmetric “bulls eye”
modes. These are predicted for circular mirrors from
beam waveguide theory [8] as well as being one of the
results obtained by Fox and Li [4] (Bovd and Kogelnik
[6] compare these formulations in the appendix to their
paper). The mirrors could always be readjusted to
resolve a single resonance peak of a higher-order mode
into two or more individual resonances. These multi-
plets could be shown to have different numbers of
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maxima along the electric field and at right angles to it.
In this respect they conformed to the square mirror
theory of Boyd and Gordon, with the degeneracy in m
and » removed by a small difference in the radius of
curvature in the x-z and y-z planes.

The true surface of a real mirror can be considered
to have one or more zones where the curvature is con-
stant and each zone would form its own FPS. If the
wavelength is such that the field overlaps many zones,
multiplets might well occur of the type observed in
these experiments. As an approximation one could
replace the oblate spheroid prototype FPS by an ellip-
soid with all three axes different. The FPS mirror would
have two principal curvatures along orthogonal diam-
eters. This would resemble the prototype strip mirrors
of Boyd and Gordon where the square mirrors are re-
solved into two strip mirrors along orthogonal direc-
tions. The strip mirror in turn can be considered to be
generated by an elliptical cylinder. The solution of the
resonator or waveguide problem for an elliptical cylin-
der with interfocal distance large compared to the wave-
lengths gives the eigenfunctions of the FPS [19].

Many variations of the FPS have already been con-
sidered by those working with them such as using two
cylindrical reflectors at right angles (circular, elliptical,
or parabolic), or unfolding the resonator to makea
beam waveguide using mirrors instead of lenses. Un-
doubtedly many more applications of the FPS will be
invented as microwave technology makes increasing
use of physical optics.
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Microwave Type Bolometer for Submillimeter
Wave Measurements®

J. F. BYRNET, rerrow, eeE, ano C. F. COOK{

Summary—An approach to the problem of submillimeter wave
measurement through the extension of microwave techniques has led
to the development of a submillimeter bolometer with the sensitivity
requisite to calibration with a thermal source. The sensor employs
conventional components, horn, waveguide and coaxial line, with a
novel coax-to-guide transition consisting of part of the bolometer
element, the rest of which serves as a center conductor of the coaxial
lines. The entire set of submillimeter components is contained in a
1-inch block of metal. Fundamental problems of detection in this band
are discussed with application to the sensor. Calibration techniques
and data taken with the instrument are reported.

INTRODUCTION

HE SENSOR described in this paper is the out-
Tcome of an effort to provide a method of meas-

urement of radiation in the wavelength region
around and below one millimeter. In approaching the
problem of submillimeter wave measurement it was
decided that the equipment design might well be bene-
fited through the extension of microwave technologies
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into this portion of the spectrum rather than the alter-
nate approach which would be to attack the problem
from the infrared point of view.

A prime advantage of the microwave view was the
likelihood that the number of unknown quantities
could be minimized through the almost exclusive use of
metallic elements in the system. The bolometer design
finally adopted essentially consists of a horn antenna
feeding a submillimeter waveguide which is terminated
in a novel waveguide to coax transition section. The
coaxial section has a center conductor of Wollaston
wire of extremely small size and high loss per unit
length. The termination of the coaxial section is of little
importance because of the high loss along the coax. The
waveguide is thus terminated in a transition to coax
with a “lossy” line as the load.

SENSOR CONFIGURATION

Fig. 1 shows the sensor configuration. The bolometer
wire serves both as the center conductors of the two
lossy coaxial lines and the probe which couples the wave-
guide and the coax system. The probe crosses the wave-



